一种新的Fe基Kagome晶格化合物YFeSn单晶,具有较高的奈尔温度的反铁磁化合物,在电输运上表现出明显的反常霍尔效应,能带结构中存在非零Berry曲率;电子能带计算结果,发现该体系的费米面,具有较强的各向异性。
we grew single crystals of Y0.5Fe3Sn3. This compound bears an antiferromagnetic ordering, and shows a weak ferromagnetism at low temperatures, where an anomalous Hall effect was observed, suggesting the non-zero Berry curvature.
本工作研究的是MnCoFeyGeSi体系的磁热/磁弹性质。在MnCoFeGe体系中通过引入适量的Si元素,成功实现了顺磁母相到铁磁马氏体相的磁结构耦合相变,并获得大的磁热效应。
The emergent evolution of first-order phase transitions from magneto-structural to magnetoelastic and magnetocaloric effect (MCE) have been investigated by X-ray diffraction, differential scanning calorimetry and magnetization measurements.
该研究发现通过调控笼目格子材料的电子结构,可以较大地改变材料的载流子迁移率,进而实现更优异的性能。这一发现为笼目格子半金属在电子学和自旋电子学方面的应用提供了材料基础和优化路径。
This work demonstrates that the crystal field and doping serve as the key tuning knobs to optimize the transport properties in kagome-lattice crystals.
稀土基铁磁材料EuB6最近被理论和实验证实为新的磁性拓扑材料。发现了磁场诱发的非共线磁结构,并对费米能级处的拓扑能带产生了调控,产生了贝利曲率增强的非常规反常霍尔效应,实现了宏观输运和拓扑电子态的同步调控。
we provide an observation that the topological electronic state, accompanied by an emergent magneto-transport phenomenon, was modulated by applying magnetic field through induced non-collinear magnetism in the magnetic Weyl semimetal EuB6 .
本工作证明直流电流在磁化反转过程中可以调节CoSnS纳米片的矫顽力。分析DW运动模型和微磁模拟证实,移动DW所需的高STT效率和低阈值电流密度是磁性和输运参数组合的结果,结果表明磁性Weyl半金属可能是开发节能自旋电子器件的良好候选者。
We have shown that a d.c. current can modulate the coercivity and thus the magnetization reversal process in CoSnS nanoflakes at low current densities. An analytical DW motion model and micromagnetic simulations confirm that the high STT efficiency and low threshold current density required to move DWs is a consequence of the combination of magnetic and transport parameters.
本工作是一篇综述文章,将近几年来磁性拓扑材料中出现的非常规行为总结归类,从半经典输运方程出发,围绕贝利曲率介绍横向纵向电子输运行为,并以一些磁性拓扑材料体系为例介绍实验上的进展。本工作的发表对于拓扑物态及电子输运行为的研究具有积极的意义,能够为后续电输运行为的研究提供参考。
In this review, the semiclassical equation is used to understand the anomalous transport behaviors in magnetic topological materials. The intrinsic anomalous Hall conductivity is obtained by integrating the Berry curvature of the occupied states, which is determined by the electronic band structure.