该研究不仅实现了磁外尔半金属中AHE的增强,而且揭示了掺杂过程中经典刚带模型的局限性,观察到了原子局域无序对电子结构的调制效应,为磁性拓扑材料乃至其它电子材料的精细能带结构和宏观物理性质的化学调控提供了更为准确的理解。
In magnetic Weyl semimetal, elevations of AHC, AHA , and SH were achieved through the doping-induced modulation of the topological band structures. Our findings provide a novel understanding of the local disorder effect of chemical doping on the modulation of topological bands.
本工作发现局域“自旋轨道极化子(SOP)”的新激发态。这种大的轨道磁化被认为是具有与贝利曲率和来源于拓扑磁体的磁电效应的循环电流相关的拓扑起源。并有望在量子器件中实现功能量子拓扑态的原子级定向构建和有序编织,有望应用于新一代复杂功能量子器件的开发。
The discovery of the localized SOP opens a novel route for manipulating the magnetic order and the topological phenomena in Weyl semimetal Co3Sn2S2.
本研究在磁性外尔半金属中通过内/外禀双机制设计,获得显著增强的AHE。该工作所提出的双机制增强思路可为其它磁性拓扑材料的大AHE及大反常能斯特效应的设计和开发提供重要借鉴。
We proposed a scheme to simultaneously tunethe AHC and AHA to large values in the magnetic Weyl semi-metal. In this study provides an effective strategy to manipulate the giant AHE via controlling the intrinsic and or extrinsic contributions in magnetic Weyl materials.
本文研究结果展示了磁性拓扑材料中丰富的输运特征:反常Hall和平面Hall效应。发现厚度的减薄导致矫顽力/输运性质有所不同;发现磁场能够调节体系的反常Hall电导;发现硬磁Weyl半金属中的平面Hall效应,是铁磁性、轨道磁电阻、手性异常等共同作用的结果。
In this work, We observed a large intrinsic AHC that is 22 % larger than bulk samples, and we showed that the PHE and LMR are a result of a complex interplay between contributions from ferromagnetism, orbital magnetoresistance and the chiral anomaly.